AN UNSTABLE NONLINEAR INTEGRODIFFERENTIAL SYSTEM

bу

R. K. Miller*

Center for Dynamical Systems

Brown University

Providence, Rhode Island

*This Research was supported in part by the Air Force Office of Scientific Research, Office of Aerospace Research, U.S. Air Force under AFOSR Grant No. 693-67, and in part by the National Aeronautics and Space Administration under Grant No. NGR 40-002-015.

ABSTRACT

Consider the nonlinear integrodifferential system

$$u'(t) = -\int_{0}^{\pi} \alpha(x)T(x,t)dx, T_{t} = T_{xx} + \eta(x)g(u(t)),$$

with initial-boundary conditions

$$u(0) = u_0, T(x,0) = f(x), T_x(0,t) = T_x(\pi,t).$$

Let α_o and η_o be the zeroth Fourier cosine coefficients of α and η . Under certain general assumptions it is known that if $\alpha_o\eta_o\neq 0$, then u(t) and T(x,t) tend to zero as $t\to\infty$. We show that when $\alpha_o\eta_o=0$ the functions u and T have limits as $t\to\infty$. These limits are complicated but can be explicitly expressed.

AN UNSTABLE NONLINEAR INTEGRODIFFERENTIAL SYSTEM

R. K. MILLER

I. INTRODUCTION.

We shall study the behavior as $t \to \infty$ of solutions of the nonlinear system

(1)
$$u'(t) = -\int_{0}^{\pi} \alpha(x)T(x,t)dx$$
, $T_{t} = T_{xx} + \eta(x)g(u(t))$, $(0 < x < \pi, t > 0)$

where ' = d/dt. We assume initial-boundary conditions

(2a)
$$u(0) = u_0, T(x,0) = f(x), (0 \le x \le \pi)$$

(2b)
$$T_{x}(0,t) = T_{x}(\pi,t) = 0. \quad (0 < t < \infty)$$

In case $g(u) = \exp(u)-1$, these equations describe the behavior of a continuous medium nuclear reactor idealized as a slab of length π with insulated faces. The unknown u is the logarithm of reactor power while T represents the difference between the actual and the design-equilibrium temperatures.

We introduce the Fourier coefficients

$$\alpha_{o} = (\sqrt{2}/\alpha) \int_{0}^{\pi} \alpha(s) ds, \alpha_{n} = (2/\pi) \int_{0}^{\pi} \alpha(s) \cos ns ds$$

for $n=1,2,3,\ldots$. Similarly η_n and f_n are the Fourier cosine coefficients of η and f. Define two sequences

(3)
$$h_n = \alpha_n \eta_n, k_n = \alpha_n f_n \quad (n = 0, 1, 2, ...)$$

and two functions

(4a)
$$a(t) = (\pi/2) \sum_{n=0}^{\infty} h_n \exp(-n^2 t),$$

(4b)
$$b(t) = (\pi/2) \sum_{n=0}^{\infty} k_n \exp(-n^2 t). \quad (0 \le t < \infty).$$

Then the solution u of (1,2) must satisfy the Volterra integrodifferential equation

(5)
$$u'(t) = -b(t) - \int_{0}^{t} a(t-s)g(u(s))ds, \quad u(0) = u_{0}.$$

Once the solution of (5) is known, the function T(x,t) is given by

(6)
$$T(x,t) = T_0(t)/\sqrt{2} + \sum_{n=1}^{\infty} T_n(t)\cos nx,$$

where for n = 0,1,2,... we have

(7)
$$T_{n}(t) = \{f_{n} + \eta_{n} \int_{0}^{t} \exp(n^{2}s)g(u(s))ds\} \exp(-n^{2}t).$$

Bronikowski [1] studied (1,2) when g(u) = u is linear. Under certain assumptions he shows that if h > 0 the functions

u(t) and T(x,t) decay to zero exponentially as $t\to\infty$. Using the exponential decay one can prove the local stability of the trivial solution $u\equiv 0$, $T\equiv 0$ of the nonlinear problem (1,2). Levin and Nohel [2] also study the nonlinear problem (1,2). In the stable case $h_0>0$ they show that the trivial solution of (1,2) is globally asymptotically stable. They also obtain a result in case $\alpha_0=\eta_0=0$. The purpose of this paper is to obtain complete results in the case where $h_0=0$. We prove:

THEOREM 1. Suppose the following assumptions are true:

- (A1) f, f', η , η ' and $\alpha \in L^2(0,\pi)$,
- (A2) $h_n \ge 0$ for all n and $h_n > 0$ for at least one n > 0,
- (A3) g is locally Lipschitz continuous on $-\infty < u < \infty$,
- (A^{l_4}) ug(u) > 0 <u>if</u> u \neq 0,
- (A5) $G(u) = \int_{0}^{u} g(s)ds \rightarrow \infty \quad \underline{as} \quad |u| \rightarrow \infty,$
- (A6) there exists K > 0 such that $|g(u)| \le K(G(u)+1)$ for all u, and
- (A7) g'(0) exists and g'(0) > 0.

a) $u^{(j)}(t) \to 0$ as $t \to \infty$, (j = 0,1,2)

- b) $g(u(t)) \in L^{1}(0,\infty)$, and
- c) the limit T(x,t) exists uniformly in $0 \le x \le \pi$ as $t \to \infty$ and this limit equals

$$(f_0 + \eta_0 \int_0^\infty g(u(s))ds)/\sqrt{2}$$
.

THEOREM 2. Suppose $h_0 = 0$, $k_0 \neq 0$ (i.e. $\alpha_0 f_0 \neq 0$, $\eta_0 = 0$). Let (A1-2) be true and suppose g satisfies

- (A8) $g \in C^1(-\infty,\infty)$ with g'(u) > 0 for all u,
- (A9) for each u_1 there exists $K = K(u_1) > 0$ such that $|g(u+u_1)-g(u_1)| \le K(G(u+u_1)-G(u_1)-ug(u_1)+1).$

Define $M = -k_0 / (\sum_{n=1}^{\infty} h_n n^{-2})$. If there exists u_1 such that $g(u_1) = M$, then the solution u_1 and u_2 exist for all $u_1 > 0$ and

- a) $u(t) \rightarrow u_1$ as $t \rightarrow \infty$,
- b) u'(t) and $u''(t) \rightarrow 0$ as $t \rightarrow \infty$.
- c) $\lim_{t \to \infty} T(x,t) = f_0 / \sqrt{2} + g(u_1) \sum_{n=1}^{\infty} (\eta_n \cos nx) / n^2$

<u>uniformly</u> for $0 \le x \le \pi$.

 $\underline{\text{If}}$ g(u) > M (< M) $\underline{\text{for}}$ $\underline{\text{all}}$ u, $\underline{\text{then}}$

- d) $u(t) \rightarrow +\infty \ (-\infty) \quad \underline{as} \quad t \rightarrow \infty$,
- e) $\lim_{t \to \infty} T(x,t) = f_0 / \sqrt{2} + g^* \sum_{n=1}^{\infty} (\eta_n \cos nx) / n^2$

where $g^* = limit g(u)$ as $u \to +\infty$ $(-\infty)$.

Note that when $g(u) = \exp u - 1$ the conditions (A3), (A4), (A5), (A7) and (A8) are clearly true. It is easily shown that (A6) is true for any $K > e(e-1)^{-1}$. Similarly in (A9) we can take $K > e(e-1)^{-1}\max \{\exp(u_1),1\}$. For this g we cannot have M > g(u) in Theorem 2. It is possible to have M < g(u), that is $M \le -1 < \exp(u) - 1$ for all $u \le 0$.

II. PRELIMINARIES.

We need the following lemma which is a special case of a result of Levin and Nohel [3, Theorem 1].

<u>LEMMA 1</u>: Suppose g(u) satisfies (A3-6) and the functions a(t) and b(t) satisfy

- (i) $a(t) \in C[0,\infty) \cap C^{3}(0,\infty), (-1)^{k}a^{(k)}(t) \ge 0$ for $0 \le t < \infty$, k = 0,1,2,3.
- (ii) $a(t) \neq a(0)$,
- (iii) $b(t) \in C[0,\infty) \cap L^1(0,\infty)$, $b^*(t) \in C(0,\infty)$ and $|b^*(t)|$ is bounded on $0 < t < \infty$.

If u(t) is any solution of equation (5) then u(t) exists for all $t \ge 0$ and u(t), $u'(t) \to 0$ as $t \to \infty$.

We shall also need some information concerning the equation obtained from (5) by linearization,

(8)
$$v'(t) = -b(t) - \int_{0}^{t} a(t-s)g'(0)v(s)ds, v(0) = u_{0}.$$

We shall study equation (8) using techniques similar to those of [4]. We shall assume throughout the following discussion that (A1), (A2) and (A7) are true and that $h_0 = k_0 = 0$.

Since a(t) and b(t) are bounded, it is easily shown that v(t) exists for all $t \ge 0$, is unique and is of exponential order, c.f. [4, Lemma 4.1] or [5, Theorem 2.1]. Let V(w) denote the Laplace transform

$$V(w) = \int_{0}^{\infty} \exp(-wt)v(t)dt.$$

We shall show that V satisfies the hypotheses of a Tauberian theorem due to Von Stachó, c.f. [6, p. 277].

An elementary calculation using (4) and (8) shows that

$$(w+(\pi/2)g'(0)I_1(w))V(w) = u_0 - (\pi/2)I_2(w)$$

where

$$I_1(w) = \sum_{n=1}^{\infty} h_n(w+n^2)^{-1}, I_2(w) = \sum_{n=1}^{\infty} k_n(w+n^2)^{-1}.$$

The functions I are clearly analytic functions of the complex variable w when $w \neq -1, -4, -9, \ldots$ If $\sigma = \text{Rew} \ge 0$, $w \neq 0$, then by (A2)

$$\text{ReI}_{1}(\sigma+i\tau) = \sum_{n=1}^{\infty} h_{n}(\sigma+n^{2})((\sigma+n^{2})^{2} + \tau^{2})^{-1} > 0.$$

Thus V(w) is analytic when $Rew \ge 0$.

From the form of $I_{\mathbf{j}}$ it follows by elementary estimates that

(9)
$$|I_{j}^{(n)}(w)| \leq \operatorname{Hn!}|\tau|^{-n-1}, (w = \sigma + i\tau)$$

for j = 1, 2, and n = 0, 1, 2, ... The constant H is independent of j and n. Also

(10)
$$|w + (\pi/2)g'(0)I_1(w)| \ge |\tau| - H|\tau|^{-1}$$

when $w = \sigma + i\tau$, $-\infty < \sigma < \infty$, $|\tau| > 0$.

Using (9) and (10) it follows by induction, c.f. [4, Lemma 5.4], that

(11)
$$|u^{(n)}(w)| \leq O(|\tau|^{-n-1})$$
 as $|\tau| \to \infty$,

n = 0,1,2,... . The above estimates and integration by parts show that for any $\,\sigma_{_{\rm O}}^{},\,\, T>0\,$

(12)
$$\left| \int_{y}^{\infty} \exp(i\tau t) V(\sigma_{O} + i\tau) d\tau \right| +$$

$$\left| \int_{-\infty}^{-y} \exp(i\tau t) V(\sigma_{O} + i\tau) d\tau \right| \rightarrow (as y \rightarrow \infty)$$

uniformly for $T \le t < \infty$. The details of this are the same as those in the proof of Lemma (5.5) of [4].

LEMMA 2. Suppose (A1-2) hold and v(t) solves (8).

- a) If $h_0 = k_0 = 0$, then $t^n v(t) \to 0$ as $t \to \infty$ for $n = 0, 1, 2, \dots$
- b) If $h_0 = 0$, then the resultant kernal R(t) for equation (8) satisfies $t^n R(t) \rightarrow 0$ as $t \rightarrow \infty$ for n = 0, 1, 2, ...

<u>PROOF:</u> Our analysis of V(w) shows that the hypotheses of Von Stachó's Tauberian theorem are satisfied. Thus a) follows immediately. Part b) is a special case of a) since R(t) is the solution of (8) in the special case where u = 0 and $b(t) \equiv a(t)g'(0)$.

III. PROOF OF THEOREM 1.

Assumption (A2) and line (4a) imply (i) and (ii) of Lemma 1. Since $k_0 = 0$ line (4b) implies (iii). Thus Lemma 1 applies to the unique solution u of (5). It follows that u(t) exists for all $t \ge 0$ and that both u(t) and u'(t) tend to zero as $t \to \infty$. Define

(13)
$$D(u) = g(u) - g'(0)u, \quad (-\infty < u < \infty)$$

and

$$A(t) = g'(0) \int_{0}^{t} a(s)ds, B(t) = \int_{0}^{t} b(s)ds, (0 \le t < \infty)$$

Since D(u) = o(|u|) and $u(t) \rightarrow 0$,

$$|g(u(t))| \le g'(0)|u(t)| + K_1|u(t)|, (t > 0)$$

for some constant $K_1 > 0$. Thus we will prove that $g(u(t)) \in L^1(0,\infty)$ if we prove that $u(t) \in L^1(0,\infty)$.

The resultant R satisfies

$$-R(t) + A(t) = \int_{0}^{t} R(t-s)A(s)ds. \quad (t \ge 0)$$

Since u(t) solves

$$u(t) = u_0 - B(t) - \int_0^t A(t-s)g(u(s))ds/g'(0),$$

it follows that

$$u(t) = u_{o}(1 - \int_{0}^{t} R(s)ds) - (B(t) - \int_{0}^{t} R(t-s)B(s)ds)$$

$$- \int_{0}^{t} R(t-s)D(u(s))ds,$$

$$= v(t) - \int_{0}^{t} R(t-s)D(u(s))ds.$$

The function v is the solution of problem (8).

Pick K>0 such that $|D(u(t))| \le K$ for all $t \ge 0$. By Lemma 2 we may assume for the same K that

$$|R(t)| \le K(t+1)^{-3}, |v(t)| \le K(t+1)^{-3}. \quad (t \ge 0)$$

Since $u(t) \rightarrow 0$, there exists T > 0 such that for all $t \ge 0$

$$|D(u(t+T))| \le K^{-1}|u(t+T)|.$$

Thus when $t \ge 0$

$$u(t+T) = v(t+T) - \int_{0}^{T} R(t+T-s)D(u(s))ds$$

$$- \int_{0}^{t} R(t-s)D(u(s+T))ds,$$

$$|u(t+T)| \le K(t+1)^{-3} + K^{2}(t+1)^{-2} +$$

$$+ \int_{0}^{t} (t+1-s)^{-3} |u(s+T)|ds,$$

$$\le H_{1}(t) + \int_{0}^{t} H_{2}(t-s)|u(s+T)|ds.$$

The comparison theorem of Nohel [5, Theorem 2.1] implies that $|u(t+T)| \le U(t)$ for all $t \ge 0$ where U is the solution of

(14)
$$U(t) = H_1(t) + \int_0^t H_2(t-s)U(s)ds.$$

Since H_1 and $H_2 \in L^1(0,\infty)$ and

$$\int_{0}^{\infty} H_{2}(t)dt = 1/2,$$

it follows by the principle of contraction mappings that (l¹) has a unique solution $U \in L^{1}(0,\infty)$. Since U(t) majorizes |u(t+T)| we see that $u \in L^{1}(0,\infty)$. This proves part b) of Theorem 1.

To finish part a) note that

$$u''(t) = -b'(t) - a(0)g(u(t)) - \int_{0}^{t} a'(t-s)g(u(s))ds.$$

Since $g(u(t)) \to 0$ and a'(t) is $L^1(0,\infty)$, the dominated convergence theorem implies

$$\int_{0}^{t} a'(t-s)g(u(s))ds \rightarrow 0.$$

Since b'(t) and g(u(t)) also tend to 0, we see that $u''(t) \to 0$ as $t \to \infty$.

To prove part c) note that T(x,t) is given by formulas (6) and (7). Thus

$$|T(x,t) - (f_0 + \eta_0 \int_0^\infty g(u(s))ds)/\sqrt{2}| \le$$

$$|(\eta_0/\sqrt{2}) \int_t^\infty g(u(s))ds| + \sum_{n=1}^\infty |f_n| \exp(-t)$$

$$+ \sum_{n=1}^\infty |\eta_n| \int_0^t \exp(s-t)|g(u(s))|ds \to 0$$

as $t\to\infty$ uniform for x on the interval $0\le x\le\pi$. This proves Theorem 1.

IV. PROOF OF THEOREM 2.

Using the definition of u_1 , α , a(t) and b(t) it follows that

$$u_{o}^{\prime}(t) = -b_{o}(t) - \int_{0}^{t} a(t-s)g_{o}(u_{o}(s))ds,$$

where

$$u_{o}(t) = u(t) - u_{1}, g_{o}(u) = g(u+u_{1}) - M,$$

and

$$b_{o}(t) = (\pi/2) \sum_{n=1}^{\infty} (k_{n}-Mh_{n}n^{-2}) \exp(-n^{2}t).$$

Parts a) and b) of Theorem 2 may now be proved in exactly the same manner as part a) of Theorem 1.

The function T(x,t) is defined by formulas (6) and (7). Since $u(t) \rightarrow u_1$,

$$\begin{split} & |\int_{0}^{t} \exp(-n^{2}(t-s)g(u(s))ds - g(u_{1})/n^{2}| = \\ & |\int_{0}^{t} \exp(-n^{2}(t-s))(g(u(s)) - g(u_{1}))ds + \int_{0}^{\infty} \exp(-n^{2}s)g(u_{1})ds| \\ & \leq \int_{0}^{t} \exp(s-t)|g(u(s)) - g(u_{1})|ds + |g(u_{1})|\exp(-t) \to 0. \end{split}$$

Thus uniformly for $0 \le x \le \pi$ the expression

$$|T(x,t) - f_0/\sqrt{2} - \sum_{n=1}^{\infty} (g(u_1)\eta_n \cos nx)/n^2| \le \frac{\sum_{n=1}^{\infty} (|f_n| \exp(-t) + |\eta_n|) \int_{0}^{t} \exp(-n^2(t-s))g(u(s)) ds - g(u_1)/n^2|}{\sum_{n=1}^{\infty} (|f_n| \exp(-t) + |\eta_n|) \int_{0}^{t} \exp(-n^2(t-s))g(u(s)) ds - g(u_1)/n^2|}$$

tends to zero as $t \to \infty$

If M > g(u) for all u (or M < g(u), then it is easily shown that $u(t) \to +\infty(-\infty)$ and $g(u(t)) \to g(+\infty)$ (or $g(-\infty)$). The behavior of T(x,t) as $t \to \infty$ may then be analyzed using the method above. This proves Theorem 2.

REFERENCES

- [1] T. A. Bronikowski, On systems of integrodifferential equations occurring in reactor dynamics, Ph.D. Thesis, University of Wisconsin, 1965.
- [2] J. J. Levin and J. A. Nohel, A nonlinear system of integrodifferential equations, Proceedings of the Conference on the Mathematical Theory of Control, at the University of Southern California, 1967, Academic Press (in press).
- [3] Perturbation of a nonlinear Volterra equation, Mich. Math. J. 12 (1965), pp. 431-447.
- [4] , On a system of integrodifferential equations occurring in reactor dynamics, J. Math. Mech. 9 (1960), pp. 347-368.
- [5] J. A. Nohel, Some problems in nonlinear Volterra integral equations, Bull. A. M. S. 68 (1962), pp. 323-329.
- [6] G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Berlin (1937).